
안드로이드 기반 IoT 애플리케이션의 Permission Smell

탐지 방법

오지강 O, 천신, 이욱진

한양대학교 컴퓨터공학과

wzq0515@hanyang.ac.kr, xxtx0122@hanyang.ac.kr, scottlee@hanyang.ac.kr

Permission Smells Detection for IoT Applications on

Android Platform

Zhiqiang WuO, Xin Chen, Scott Uk-Jin Lee

Department of Computer Science & Engineering, Hanyang University

Abstract

 With the rapid development of the Internet of Things (IoT), the end-users may remotely control their

IoT devices via their Android devices. The developers may request some unnecessary permissions and

request sensitive permission access every time without checking the granted status, which leads to the

risk of over privilege and privacy leakage. In this paper, we propose a methodology used to detect two

kinds of permission smells on Android devices by similarity coefficient and depth-first search algorithm

to assist the developers in detecting the Android-specific smells during development.

1. INTRODUCTION

Internet of Things (IoT) devices extensively used in

the smart home, industry automation, agricultural

management, and other smart environments have

become an essential part of modern society. Generally,

the vendors of IoT devices made Android applications

used by their end-users to control the corresponding

IoT devices via network or Bluetooth remotely. However,

in this very competitive market, developers pushed to

release new versions of their applications to retain users

regularly. With such pressure, developers may

unintentionally employ bad design or implementation,

which leads to introduce the code smells [1]. Android-

specific code smells are different from the traditional

Object-Oriented Program since they often refer to a

misuse of the Android framework [2].

Nevertheless, IoT applications request lots of

permissions to support their functionalities, including

normal level, dangerous level, and protected level

permissions. The developers usually misuse

permissions in Manifest.xml and do not check the

granted status of dangerous permission with the bad

practice. These bad practices under developing can be

caused by either carelessness by the developers or

intentionally by an attacker so that the applications exist

the risk of over privilege, privacy leakage, and reliability.

Therefore, assisting developers in building secure and

reliable IoT applications with deadline pressure is a

considerable challenge. Nevertheless, the security

testing costs extra time by the security team after

development.

In this paper, we propose a methodology to detect

the relevant permission smells on IoT applications such

as unnecessary permissions [2] and missing

checkSelfPermission [3]. The two kinds of permission

smells detected by similarity coefficient and depth-first

search algorithm, respectively. As a result, the

developers may run the algorithm to dig out the

permissions smells just-in-time, which might improve

the security and quality during development.

The remainder of this paper is organized as follows.

Section 2 presents the related work on the permission

smells of Android applications. Section 3 elaborates on

the methodology for detecting the permission smells.

Finally, we discuss the conclusion of this paper in

Section 4.

2. RELATED WORK

In this section, we discuss related work on permission

smells. Android application is the event-driven program

that has multiple entry points and its typical mechanism

like permission and Inter-Component Communication

(ICC) [4], which is quite different from the traditional

Java program. Therefore, Android-specific code smells

[2] are defined by Ghafari et. al. There is a total of 28

Android-specific smells. Nevertheless, the permission-

2019년 한국소프트웨어종합학술대회 논문집

293

related smells are easily omitted by developers, which

also make the security and quality issue.

2.1 Unnecessary Permissions

In general, the developers request more unnecessary

permissions in the Manifest.xml file to satisfy the

functionalities. However, the unnecessary permissions

may cause the over privileges and the risk of privacy

leakage by attackers. Currently, several previous studies

[5-6] analyzed the descriptions of applications from

official markets to verify the unnecessary permissions

from the description. The description may give a

fantastic introduction of its functionalities, which may

attract more users to download. However, the

secondary functions tend to unmentioned in its

description, which cannot expose all used permissions.

2.2 Missing checkSelfPermission

Since Android 6.0, the dangerous permissions must

be granted by users when they required at the first time.

Therefore, the methods that use the relevant APIs

should check whether the permission was granted by

users firstly. The developers may request permission

access every time without using checkSelfPermission()

to check the granted status of permission, which will

cause a high chance of the application crashing or not

performing its intended functionality. [3].

Overall, there are lots of research works on Android

security with permissions. However, these researches

focus on the cacoethic usage of permissions from the

view of security analysts after development, which may

not provide the best practice of developing reliable

applications during development.

3. METHODOLOGY

In this paper, we present a static analyses approach

to detect the misuse of permissions on the Android

source code under development. Figure 1 shows the

overall structure of permission smell detection.

Figure 1 Structure of Permission Smell Detection

3.1 Permissions and APIs Extraction

In this section, we descript two methods to extract

the declared and used permissions from Manifes.xml

and Java source code, respectively.

The declared permissions have two types of

permission in the Manifest.xml file. One is single

permission that has multiple callable APIs. The other

one is a permission group that contains a set of

dangerous permissions such as SMS and PHONE. A

permission group is granted by users, which means its

attached permissions are also granted. To cover all

declared permissions, we wrote Regular Expression to

filter the permissions and permission groups. Moreover,

the permission groups should be mapped to a set of

permissions since an application may not use all

permissions from the group.

To analyze the actual usage of permissions in the

source code, we made use of the API call for permission

mappings extracted by PScout [7]. PScout can

generate the Android APIs to permission mappings, but

the various APIs may map to the same permission and

called multiple times. In this case, the duplicated called

APIs removed as the first step after extraction. Then,

the APIs mapped into a permission set that stores the

result of actually used permissions by PScout. If the

mapped permission from PScout does not exist in the

result, the permission appended at the end of the result.

3.2 Unnecessary Permissions Detection

In the previous section, we extracted the declared

permissions from the Manifest.xml file and the used

permissions in the source code. Here, we employed the

Jaccard Index [8] to calculate the similarity coefficient

between the declared and used permissions, which is a

statistic used for assessing the similarity and diversity

of sample sets. The Jaccard Index equation is shown

as follows.

𝐽(𝑝𝑑 , 𝑝𝑢) =
|𝑝𝑑 ∩ 𝑝𝑢|

|𝑝𝑑| + |𝑝𝑢| − |𝑝𝑑 ∩ 𝑝𝑢|

where 𝑝𝑑 denotes a set of permissions which declared

in the Manifest.xml, 𝑝𝑢 denotes a set of permissions

that are used in the source code. In this case, 𝑝𝑑

contains each permission of 𝑝𝑢 for an executable

application. In the ideal situation, 𝑝𝑑 same as 𝑝𝑢. If so,

there is not existing unnecessary permission smell in

that application and 𝐽(𝑝𝑑 , 𝑝𝑢) equals 1. Otherwise, the

values of the Jaccard Index should be [0,1), which

indicates that there are unnecessary permissions

declared in the Manifest.xml file.

In this paper, we determine there is not existing

unnecessary permission smell as the following two

conditions. First, the value of the Jaccard index is 1,

which the declared and used permission are the same

without any redundancy. Second, the redundant

2019년 한국소프트웨어종합학술대회 논문집

294

permissions are normal level permissions when the

value of the Jaccard Index less than 1. The unnecessary

permissions in the declared permissions are dangerous

level or protected level permissions that may cause the

risks of potential security utilized by attackers such as

over privilege and privacy leakage.

3.3 CheckSelfPermission Function Search

As section 2.2 mentioned above, the developers did

not use checkSelfPermission() method to check

whether users granted the required permission.

However, the application repeatedly requests the

granted permissions, which has a high chance of the

app crashing or not performing its intended functionality.

In this paper, we employed the backward searching

algorithm to check whether the developers use

checkSelfPermission() to check the granted status of

dangerous permission before using the corresponding

APIs to improve its internal quality.

Input: api, method

1: function checkStatus(api, method)

2: code ← method.split()

3: permission ← gerPermission(api)

4: while code is not Null do

5: statement ← code.pop()

6: if ‘checkSelfPermission’ in statement then

7: if permission in statement then

8: return True

9: end if

10: end if

11: if other method in statement then

12: if checkStatus(api,method) then

13: return True

14: end if

15: end if

16: end while

17: return False

18: end function

Output: checkSelfPermission is used or not

List 1 Algorithm that checks ‘checkSelfPermission’

List 1 presents a pseudo-code of the algorithm we

designed for function call analysis. It checks whether

the checkSelfPermission() method is called before the

use of sensitive APIs. The algorithm uses the depth-

first search to search the function call. Two conditions

determine the granted status has checked before its

usage. First, one statement has checked the granted

status of permission by checkSelfPermission() function

(Line 6-10). Second, the other method called to check

the granted status with the target function (Line 11-15).

If this algorithm returns true as a result, the

developers have utilized the checkSelfPermission()

method to check whether the required permission

granted. Otherwise, the application requests the

corresponding permission access every time, which

indicates a permission smell.

4. CONCLUSION

In this paper, we proposed a methodology that can

detect two kinds of permission smells on IoT

applications, named unnecessary permissions and

missing checkSelfPermission. The two permission

smells detected by similarity coefficient, and a static

analysis algorithm, which may help developers detect

the Android-specific smells just-in-time. Moreover,

this methodology provides a novel insight for

developing secure software during development.

ACKNOWLEDGMENT

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (NRF-2019R1H1A1101270).

REFERENCE

[1] Z. B. Celik, G. Tan and P. McDaniel, “IoTGuard: Dynamic

Enforcement of Security and Safety Policy in Commodity IoT”, in Proc.

of Network and Distributed Systems Security Symposium, 2019

[2] P. Gadient, M. Ghafari, P. Frischknecht and O. Nierstrasz,

“Security Code Smells in Android ICC”, Empirical Software

Engineering, vol. 24, 2019, pp. 3046-3076

[3] C. Dennis, D. E. Krutz and M. W. Mkaouer, “P-Lint: A Permission

Smell Detector for Android Applications”, in proc. of International

Conference on Mobile Software Engineering and Systems, 2017, pp.

219-220

[4] P. Kong, L. Li, J. Gao, K. Liu, T. Bissyande and J. Klein,

“Automated Testing of Android Apps: A Systematic Literature Review”,

IEEE Trans. on Reliability，2018， pp.1-23

[5] R. Pandita, X. Xiao, W. Yang, W. Enck and T. Xie, ”WHYPER:

Towards Automating Risk Assessment of Mobile Applications”, in

proc. of USENIX Security Symposium, 2013, pp. 527-542

[6] Z. Wu, X. Chen and S. U. J. Lee, “Identifying Latent Android

Malware from Application’s Description using LSTM”, in proc. of

International Conference on Information, System and Convergence

Applications, 2019, pp. 40-42

[7] K. W. Y. Au, Y. Zhou, Z. Huang and D. Lie, “PScout: analyzing

the Android permission specification”, in proc. of ACM Conference

on Computer and Communications Security, 2012, pp. 217-228

[8] https://en.wikipedia.org/wiki/Jaccard_index

2019년 한국소프트웨어종합학술대회 논문집

295

	Main
	Return

