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Abstract—Android is the most popular mobile system in the world where many applications provide convenient and 

diverse functions on top of it for our daily lives. However, a new Android malware is revealed every 10 seconds and 

the official application markets still consists of malicious and undetected applications due to the limitation of the 

existing malware detection techniques. In this paper, we propose an approach to identify the latent Android 

malware from application’s description using Long Short-Term Memory (LSTM) technique. The actual 

permissions requested by source code and permissions predicted from the description using semantics analysis to 

are compared to verify the consistency. If an application requests a permission undeclared in the description or 

homogeneous applications, it will be considered as a latent Android malware. This approach can surely provide 

more secure environment for the end-users before they install the applications. 
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I.  INTRODUCTION 

With the rapid advancement of mobile technologies, 
mobile applications provide diverse end-user functions 
that are very convenient to our daily life gradually making 
people to depend more on smart devices. Currently in 
Android, the most popular smart mobile device platform, 
number of malwares are ever increasing. Over 3.25 
million Android malicious apps have been uncovered in 
2016 indicating that a new Android malware is introduced 
every 10 seconds [1]. Although Google Play [2] verifies 
the security of uploaded applications, there are also 
possibilities of fishes escaping from the net. In addition, 
the end-users can also download applications from the 
third-parties store or repository where security of the 
application is not verified. The end-users without enough 
knowledge on security aspect of mobile applications 
cannot identify whether the downloaded application is 
malicious. These unverified and unreliable mobile 
applications may lead to the risk of devices hacking.  

In order to build a secure Android platform for end-
users, researchers and analysts have used diverse 
approaches to detect various Android malwares [3-6]. For 
example, DeepRefiner [3] utilizes the static analysis to 
explore malicious features based on XML file and 
bytecode in Android apps. However, this approach 
consumes a large amount of time for the detection. To 
reduce the time taken, Droid-Sec [4] applied a hybrid 
method to detect Android malware using deep learning. 
However, this approach generates a higher false positive 
rate. These related researches indicate that malicious 
Android applications cannot effectively be detected from 
source code and behaviors at runtime. Hence, the end-
users are still valuable to download malicious 
applications from official or third-party markets. 

Developers always put some amazing words in 
applications’ descriptions to attract more end-users to 
download. These descriptions introduce the primary 
functions of the application and its novel features in 
details from which some specific permissions in the 
Android system required by the applications’ functions 
and features can be determined. Therefore, we proposed 
a novel framework for detecting and verifying the 
consistency between actually requested permissions and 
permissions that are common or predicted from 
application’s descriptions and its categories using Long 
Short-Term Memory (LSTM) technique [7]. We build a 
model to analyze and predict the possible requested 
permissions of the target application from its description 
in the download webpage. Then our approach will 
compare the predicted permissions with the actually 
requested permissions in manifest.xml after decompiling 
to identify whether the appliocation is malicious. The 
entire process of the proposed approach is completed 
before installing the application to avoid the possible 
threats from the unsecured applications. 

The remainder of the paper is organized as follows. 
Section II describes the related works. Section III outlines 
the overall architecture of our approach and provide 
details of each step involved. Section IV discusses 
possible limitations and concludes the paper. 

II. RELATED WORKS

Currently, there are many Android malware detection 
tools based on static and dynamic analysis [8].  

The static analysis approaches only analyze the source 
code to detect the malicious code and may lead to a large 
number of false positive as they cannot detect all possible 
cases of malware [1]. The dynamic analysis approaches 
on the other hand can detect the behaviors of applications 
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at runtime, but they require adequate input suites to 
sufficiently exercise execution paths.  

Although the current researches have already 
achieved the high accuracy on malware detection, the 
existing tools cannot guarantee a secure environment for 
the end-users. There are few malicious applications still 
existing in the official market for download which infects 
end-users’ mobile devices with a virus. Therefore, we 
propose an approach to avoid these malicious yet 
undetected applications before the end-users download. 

III. METHODOLOGY 

In this section, we first introduce the overall process 
of our approach as shown in Fig. 1. Initially, in order to 
extract more dataset as training data, we collect benign 
applications from Google Play. Then, the VirusTotal [9] 
with 51 anti-virus scanners are applied to check whether 
the collected applications are malicious. Each target 
application is considered as the training data only if all 
scanners show that the application is benign. If the target 
application is neither malicious nor benign, it is called a 
latent Android malware. Besides the benign applications, 
malicious applications will be obtained from VirusShare 
[10] which is a repository of malware samples provided 
to security researchers. The repository includes more than 
32 million malicious samples where they will directly be 
taken as a malicious dataset. 

 

Figure 1.  Overall steps of the proposed approach.  

A. Pre-processing 

To detect the latent malicious applications, required 
permissions of the malicious dataset from VirusTotal and 
the benign dataset from VirusShare should be extracted. 
The procedure of such pre-processing is shown in Fig. 2. 

 

Figure 2.  The procedure of pre-processing 

Firstly, the Android apk files are decompiled to obtain 
source code for extracting actually requested permissions 
from manifest.xml file. The requested permissions in 
Android applications are represented in a one-hot vector 
using Word2Vec technique [7]. Then, the n*k matrix 
called Actual Permissions Matrix (APM) that consists of 
one-hot vectors representing the requested permissions 
from each application is created. In APM, k is the number 
of all usable permissions in Android system and n is the 
number of analyzed applications in the malicious and 
benign dataset. The commonly requested permissions for 
a category of applications can be extracted by the 

generated APM. For instance, social applications always 
request INTERNET permissions at runtime,  which is 
common permission for social applications such as 
Facebook, WeChat and Kakao Talk. However, functions 
specific to an application are usually are not requested by 
other applications in the same category such as 
LOCATION permission.  

         Proportion =  
# 𝑜𝑓 𝑎𝑝𝑝𝑠 𝑢𝑠𝑒𝑑 𝑡ℎ𝑖𝑠 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

# 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑝𝑝𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
         (1) 

      {
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ≥ 𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑          1
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 < 𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑           0

                (2) 

Hence, threshold is applied in the pre-processing stage 
to filter the most common permission in that category. If 
the proportion of the number of applications in Eq. (1) 
that request the target permission out of all applications 
in its category is more than the threshold, the permission 
will be considered common permission in this category of 
applications. Otherwise, the permission is considered as a 
specific to a function of an application that is different 
from others as shown in Eq. (2). If the permission is 
considered as a common in a category of applications, the 
value of the permission should be 1 in the index of the 
matrix called Common Permissions Matrix (CPM). CPM 
is an m*k dimension matrix where m is the number of 
application categories in Google Play. Other permissions 
are 0 in the CPM. Hence, each vector represents a set of 
permissions requested by a category of homogeneous 
applications. 

B. Semantics Analysis and Prediction 

In this step, stacked LSTM is applied to analyze the 
semantics of applications’ description for predicting the 
latent requested permissions. The descriptions of 
applications on Google Play or other third-party markets 
are collected by crawler technique. The architecture of 
permissions prediction is shown in Fig. 3 below. 

 

Figure 3.  Permissions prediction by the description 

The descriptions of applications usually introduce the 
attractive features and specific functions that are different 
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from other homogeneous applications. These application 
specific functions require some specific permissions. 
Therefore, we embed the descriptions that are natural 
language to a one-hot vector. Each sentence in the 
description will be an input data in this architecture. The 
stacked LSTM is then able to analyze each sentence that 
maps to a specific feature or operation in an application 
for predicting latent permission in Android. Stacked 
LSTM not only provides a predictor for each sentence, 
but also keeps the overall chrematistics which is not 
mentioned in the description for the whole application. 
For instance, as a social application, an application 
provides the services which depend on the Internet may 
not appear in the description because the Internet is basic 
permission required in social applications. The softmax is 
applied in the end of LSTM to identify the permissions 
requested in the application. Therefore, we will get a k-
dimension one-hot vector as predicted requested 
permissions (PRP) for the target application. 

C. Consistency Verification 

Finally, the PRP is compared with the APM to 
analyze whether the target application requests the 
unknown permissions that were not mentioned in the 
description. Since some basic permissions will not be 
mentioned in the description such as Internet permission 
in social applications, Location permission in map 
applications and Camera permission in photo 
applications, CPM for different category is also 
considered as shown in Eq. (3).  

        possible permission =  CPM ∪  PRP           (3) 

The combination of CPM and PRP is called Possible 
Permission (PP) which includes all the latent requested 
permissions in the target application based on the 
description of the application and common permission in 
the homogeneous applications. Then, the PP is matched 
with APM as shown in Eq. (4) to get the Unknown 
Permissions Vector (UPV) which represents neither the 
common permissions in homogeneous applications nor 
the permissions identified by descriptions. 

     unknown permissions = PP ⊕ APM          (4) 

If |UPV|  is 0, it denotes that the actually requested 
permissions are same as its description and other 
homogeneous applications. Otherwise, the proposed 
approach will detect that the target application requests 
some permissions which is neither common nor predicted 
from the description and they will be refused in the 
installation part. 

IV. CONCLUSION 

In this paper, we present a novel approach to verify 
the consistency between the description of an Android 
application in the market and the actually requested 
permissions in manifest.xml of the application. The 
description usually denotes the functions specific to the 

target application. These specific functions may require 
some specific permissions which are not requested by 
homogeneous applications, which will be declared in its 
description to attract the end-users. We used LSTM to 
analyze the semantics of each sentence in the description 
for getting their latent permissions if the predicted 
permissions are exactly the same as actually requested 
permissions. We consider such application as a benign 
application which does not deliberately hide its function. 
Otherwise, the target application consists of latent risk 
due to the inconsistency between the predicted and actual 
requested permissions, which will be denied in the 
installation part. However, this approach can suffer from 
the cold-start issue. The end-users can not only download 
applications from the markets, but also share the 
applications with others. In this case, we cannot collect 
application’s description for the detection. With the 
proposed approach, end-users can easily prevent using 
malicious applications, even the ones that are not 
identified by application markets, as they can be detected 
prior to actual installation. 
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