
Identifying Latent Android Malware from Application’s

Description using LSTM

Zhiqiang Wu, Xin Chen, Scott Uk-Jin Lee

Department of Computer Science and Engineering, Hanyang University, Ansan, South Korea

E-mail: {wzq0515, xxtx0122, scottlee}@hanyang.ac.kr

Abstract—Android is the most popular mobile system in the world where many applications provide convenient and

diverse functions on top of it for our daily lives. However, a new Android malware is revealed every 10 seconds and

the official application markets still consists of malicious and undetected applications due to the limitation of the

existing malware detection techniques. In this paper, we propose an approach to identify the latent Android

malware from application’s description using Long Short-Term Memory (LSTM) technique. The actual

permissions requested by source code and permissions predicted from the description using semantics analysis to

are compared to verify the consistency. If an application requests a permission undeclared in the description or

homogeneous applications, it will be considered as a latent Android malware. This approach can surely provide

more secure environment for the end-users before they install the applications.

Keywords-Android malware; Permissions; LSTM; Consistency; Word2Vec

I. INTRODUCTION

With the rapid advancement of mobile technologies,
mobile applications provide diverse end-user functions
that are very convenient to our daily life gradually making
people to depend more on smart devices. Currently in
Android, the most popular smart mobile device platform,
number of malwares are ever increasing. Over 3.25
million Android malicious apps have been uncovered in
2016 indicating that a new Android malware is introduced
every 10 seconds [1]. Although Google Play [2] verifies
the security of uploaded applications, there are also
possibilities of fishes escaping from the net. In addition,
the end-users can also download applications from the
third-parties store or repository where security of the
application is not verified. The end-users without enough
knowledge on security aspect of mobile applications
cannot identify whether the downloaded application is
malicious. These unverified and unreliable mobile
applications may lead to the risk of devices hacking.

In order to build a secure Android platform for end-
users, researchers and analysts have used diverse
approaches to detect various Android malwares [3-6]. For
example, DeepRefiner [3] utilizes the static analysis to
explore malicious features based on XML file and
bytecode in Android apps. However, this approach
consumes a large amount of time for the detection. To
reduce the time taken, Droid-Sec [4] applied a hybrid
method to detect Android malware using deep learning.
However, this approach generates a higher false positive
rate. These related researches indicate that malicious
Android applications cannot effectively be detected from
source code and behaviors at runtime. Hence, the end-
users are still valuable to download malicious
applications from official or third-party markets.

Developers always put some amazing words in
applications’ descriptions to attract more end-users to
download. These descriptions introduce the primary
functions of the application and its novel features in
details from which some specific permissions in the
Android system required by the applications’ functions
and features can be determined. Therefore, we proposed
a novel framework for detecting and verifying the
consistency between actually requested permissions and
permissions that are common or predicted from
application’s descriptions and its categories using Long
Short-Term Memory (LSTM) technique [7]. We build a
model to analyze and predict the possible requested
permissions of the target application from its description
in the download webpage. Then our approach will
compare the predicted permissions with the actually
requested permissions in manifest.xml after decompiling
to identify whether the appliocation is malicious. The
entire process of the proposed approach is completed
before installing the application to avoid the possible
threats from the unsecured applications.

The remainder of the paper is organized as follows.
Section II describes the related works. Section III outlines
the overall architecture of our approach and provide
details of each step involved. Section IV discusses
possible limitations and concludes the paper.

II. RELATED WORKS

Currently, there are many Android malware detection
tools based on static and dynamic analysis [8].

The static analysis approaches only analyze the source
code to detect the malicious code and may lead to a large
number of false positive as they cannot detect all possible
cases of malware [1]. The dynamic analysis approaches
on the other hand can detect the behaviors of applications

40

at runtime, but they require adequate input suites to
sufficiently exercise execution paths.

Although the current researches have already
achieved the high accuracy on malware detection, the
existing tools cannot guarantee a secure environment for
the end-users. There are few malicious applications still
existing in the official market for download which infects
end-users’ mobile devices with a virus. Therefore, we
propose an approach to avoid these malicious yet
undetected applications before the end-users download.

III. METHODOLOGY

In this section, we first introduce the overall process
of our approach as shown in Fig. 1. Initially, in order to
extract more dataset as training data, we collect benign
applications from Google Play. Then, the VirusTotal [9]
with 51 anti-virus scanners are applied to check whether
the collected applications are malicious. Each target
application is considered as the training data only if all
scanners show that the application is benign. If the target
application is neither malicious nor benign, it is called a
latent Android malware. Besides the benign applications,
malicious applications will be obtained from VirusShare
[10] which is a repository of malware samples provided
to security researchers. The repository includes more than
32 million malicious samples where they will directly be
taken as a malicious dataset.

Figure 1. Overall steps of the proposed approach.

A. Pre-processing

To detect the latent malicious applications, required
permissions of the malicious dataset from VirusTotal and
the benign dataset from VirusShare should be extracted.
The procedure of such pre-processing is shown in Fig. 2.

Figure 2. The procedure of pre-processing

Firstly, the Android apk files are decompiled to obtain
source code for extracting actually requested permissions
from manifest.xml file. The requested permissions in
Android applications are represented in a one-hot vector
using Word2Vec technique [7]. Then, the n*k matrix
called Actual Permissions Matrix (APM) that consists of
one-hot vectors representing the requested permissions
from each application is created. In APM, k is the number
of all usable permissions in Android system and n is the
number of analyzed applications in the malicious and
benign dataset. The commonly requested permissions for
a category of applications can be extracted by the

generated APM. For instance, social applications always
request INTERNET permissions at runtime, which is
common permission for social applications such as
Facebook, WeChat and Kakao Talk. However, functions
specific to an application are usually are not requested by
other applications in the same category such as
LOCATION permission.

 Proportion =
𝑜𝑓 𝑎𝑝𝑝𝑠 𝑢𝑠𝑒𝑑 𝑡ℎ𝑖𝑠 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑜𝑓 𝑎𝑙𝑙 𝑎𝑝𝑝𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 (1)

 {
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ≥ 𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑 1
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 < 𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑 0

 (2)

Hence, threshold is applied in the pre-processing stage
to filter the most common permission in that category. If
the proportion of the number of applications in Eq. (1)
that request the target permission out of all applications
in its category is more than the threshold, the permission
will be considered common permission in this category of
applications. Otherwise, the permission is considered as a
specific to a function of an application that is different
from others as shown in Eq. (2). If the permission is
considered as a common in a category of applications, the
value of the permission should be 1 in the index of the
matrix called Common Permissions Matrix (CPM). CPM
is an m*k dimension matrix where m is the number of
application categories in Google Play. Other permissions
are 0 in the CPM. Hence, each vector represents a set of
permissions requested by a category of homogeneous
applications.

B. Semantics Analysis and Prediction

In this step, stacked LSTM is applied to analyze the
semantics of applications’ description for predicting the
latent requested permissions. The descriptions of
applications on Google Play or other third-party markets
are collected by crawler technique. The architecture of
permissions prediction is shown in Fig. 3 below.

Figure 3. Permissions prediction by the description

The descriptions of applications usually introduce the
attractive features and specific functions that are different

41

from other homogeneous applications. These application
specific functions require some specific permissions.
Therefore, we embed the descriptions that are natural
language to a one-hot vector. Each sentence in the
description will be an input data in this architecture. The
stacked LSTM is then able to analyze each sentence that
maps to a specific feature or operation in an application
for predicting latent permission in Android. Stacked
LSTM not only provides a predictor for each sentence,
but also keeps the overall chrematistics which is not
mentioned in the description for the whole application.
For instance, as a social application, an application
provides the services which depend on the Internet may
not appear in the description because the Internet is basic
permission required in social applications. The softmax is
applied in the end of LSTM to identify the permissions
requested in the application. Therefore, we will get a k-
dimension one-hot vector as predicted requested
permissions (PRP) for the target application.

C. Consistency Verification

Finally, the PRP is compared with the APM to
analyze whether the target application requests the
unknown permissions that were not mentioned in the
description. Since some basic permissions will not be
mentioned in the description such as Internet permission
in social applications, Location permission in map
applications and Camera permission in photo
applications, CPM for different category is also
considered as shown in Eq. (3).

 possible permission = CPM ∪ PRP (3)

The combination of CPM and PRP is called Possible
Permission (PP) which includes all the latent requested
permissions in the target application based on the
description of the application and common permission in
the homogeneous applications. Then, the PP is matched
with APM as shown in Eq. (4) to get the Unknown
Permissions Vector (UPV) which represents neither the
common permissions in homogeneous applications nor
the permissions identified by descriptions.

 unknown permissions = PP ⊕ APM (4)

If |UPV| is 0, it denotes that the actually requested
permissions are same as its description and other
homogeneous applications. Otherwise, the proposed
approach will detect that the target application requests
some permissions which is neither common nor predicted
from the description and they will be refused in the
installation part.

IV. CONCLUSION

In this paper, we present a novel approach to verify
the consistency between the description of an Android
application in the market and the actually requested
permissions in manifest.xml of the application. The
description usually denotes the functions specific to the

target application. These specific functions may require
some specific permissions which are not requested by
homogeneous applications, which will be declared in its
description to attract the end-users. We used LSTM to
analyze the semantics of each sentence in the description
for getting their latent permissions if the predicted
permissions are exactly the same as actually requested
permissions. We consider such application as a benign
application which does not deliberately hide its function.
Otherwise, the target application consists of latent risk
due to the inconsistency between the predicted and actual
requested permissions, which will be denied in the
installation part. However, this approach can suffer from
the cold-start issue. The end-users can not only download
applications from the markets, but also share the
applications with others. In this case, we cannot collect
application’s description for the detection. With the
proposed approach, end-users can easily prevent using
malicious applications, even the ones that are not
identified by application markets, as they can be detected
prior to actual installation.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIP) (No. NRF-2016R1C1B2008624).

REFERENCES

[1] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an and H. Ye, “Significant
permission identification for machine-learning-based android
malware detection,” IEEE Trans.on Industrial Informatics, vol.
14, no. 7, pp. 3216-3225, July 2018

[2] Google Play: https://play.google.com/

[3] K. Xu, Y. Li, R. H. Deng and K. Chen, “DeepRefiner: multi-layer
android malware detection system applying deep neural
networks,” in Proc. of IEEE European Symposium on Security
and Privacy, pp. 473-487, 2018

[4] Z. Yuan, Y. Lu, Z. Wang and Y. Xue, “Droid-sec: deep learning
in android malware detection,” in Proc. of ACM Conference on
SIGCOMM, pp. 371-372, 2014

[5] Y. Lee, J. Bang, G. Safi, A. Shahbazian, Y. Zhao and N.
Medvidovic, “A SEALANT for inter-app security holes in
android”, in Proc. of IEEE/ACM International Conference on
Software Engineering, pp. 312-323, 2017

[6] C. Gao, J. Zeng, M. R. Lyu and I. King, “Online app review
analysis for indetifying emerging issues,” in Proc. of IEEE/ACM
International Conference on Software Engineering, pp. 48-48,
2018

[7] J. Y. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R.
Monga and G. Toderici, “Beyond short snippets: deep networks
for video classification,” in Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4694-4702, 2015

[8] M. Hammad, J. Garcia and S. Malek, “Self-protection of android
systems from inter-component communcation attacks,” in Proc.
of IEEE/ACM International Conference on Automated Software
Engineering, pp. 726-736, 2018

[9] VirusToTal: https://www.virustotal.com/#/home/upload

[10] VirusShare: https://virusshare.com/

42

