
주주문일정관리에서 교착상태 회피를 위한

은행원 알고리즘의 적용

오지강 이욱진

한양대학교 컴퓨터공학과

hhhwwwuuu@hanyang.ac.kr, scottlee@hanyang.ac.kr

’’

Order Scheduling in product supply chain is an important activity to adequately manage cash fl

ow for supplier. However, in current order scheduling, deadlock may appear when managing mul

tiple supply chain flows simultaneously. This paper proposes a deadlock avoidance method for o

rder scheduling in product supply chain system by adopting Banker’s algorithm which is a comm

only used in operating systems for deadlock avoidance. After thorough analysis and comparison

s, Banker’s algorithm is utilized to manage order scheduling in product supply chain instead of

managing memories in operating systems. As a result, order scheduling can be managed effectiv

ely with dramatically less chances of deadlock when handling multiple orders. To verify the pro

posed method, SPIN is used to simulate and verify the correctness.

11. INTRODUCTION

In operating systems, many concurrent processes

are executed simultaneously where many scheduling

issues such as deadlock, data race and starvation

exist. In order to prevent a deadlock for resource

allocation, Operating System (OS) provides adequate

mechanism called Banker’s algorithm [1]. The

deadlock not only exists in OS, but also in Order

Scheduling Management (OSM) of product supply

chain. In OSM, a deadlock can frequently occur when

managing supply and demand between supplier and

retailers. Supplier needs to reasonably arrange

sequence of order to satisfy retailers. Scheduling

management for orders is critical in product supply

chain to ensure every retailer to receive commodities

from a common supplier. The order contracts

between supplier and retailers can specify various

payment options such as before or after the delivery

of commodities or even several installments. With

such a variation in money flow, a supplier has to

manage not only the cost for manufacturing

commodities but also other operational cost such as

management fee, equipment maintenance and storage

charge. These situations may cause supplier to reach

insufficient money flow to produce commodities,

resulting in a low productivity or even a state of

financial deficit. Hence, the risk of capital chain

rupture for supplier increases with the increase in

number of orders or amounts of commodities.

Without a careful scheduling of orders, resources

allocation of supplier may result in a deadlock

situation. Therefore, efficient algorithm is required to

avoid such deadlock situations leading to capital

chain rupture in OSM.

In order to avoid capital chain rupture in OSM and

to effectively manage the money flow, it is necessary

to adequately allocate requirements of commodities

to ensure satisfaction of retailers. We propose an

adoption of Banker’s algorithm in OSM to avoid

possible deadlock situations. After thorough analysis and
comparisons, Banker’s algorithm is utilized to manage order

scheduling in OSM instead of managing memories in OS.

Then, the proposed deadlock avoidance is verified

with the finite state model checker called SPIN [2].

The model will be written in Promela language to

verify the correctness of system.

The rest of the paper is organized as follows.

Section 2 discusses Banker’s algorithm for avoidance
of a deadlock in OS. The implementation of Banker’s
algorithm in OSM and verification with SPIN are

described in section 3. Finally, section 4 concludes

the paper.

660

2016년 한국컴퓨터종합학술대회 논문집



22. RELATED WORK

2.1 Deadlock avoidance with Banker’s Algorithm

A deadlock is a situation where number of

processes result in a circular waiting [1]. It occurs

due to inadequate resource allocations. A deadlock

will increase the cost of system resources and

decrease their utilization rate. There are three

existing methodologies to allocate resources in

multiprocessing system for avoiding a deadlock;

deadlock prevention, deadlock avoidance and

deadlock detection [3]. Banker’s Algorithm which is
used in OS for deadlock avoidance was developed by

Dijkstra [4], then extended to handle multiple

resources types by Haberman[5]. Banker’s algorithm
specifies distinct two states which occurs during

resource allocation. The definition of each state is

shown as following:

- Safe state: contains at least one resource

allocation sequence that can make all

processes finish safely at the current state.

- Unsafe state: contains resource allocation

sequences which always result in a deadlock at

the current state.

Suppose a system with n processes (P1, P2，…，Pn)
and m resources (R1, R2,…, Rm).
- The matrix of the maximum demand is

formulated as Max(i,j)=k. It defines that the
process Pi needs k-Rj resources at maximum.

- The matrix of allocation is formulated as

Allocation(i,j)=k. It defines that the process Pi
has already acquired k-Rj resources.

- The matrix of need is formulated as Need(i,j)=k.
It defines that the process Pi still needs k-Rj
resources to complete.

- The vector of availability is formulated as

Availability(i)=k. It defines that k-i resources are
available currently. Availability’ defines a status
that the process returns the all resource to

system.

- The relationships between the above three

matrices are formulated as below:

Need(i,j) = Max(i,k) - Allocation(i,j)
Availability’(1,...m)=Availability(1,...m)+Allocation(i,1,..m)
According to the algorithm of safe detection,

system will successfully detect deadlock causing

unsafe states. If the system is in safe state, the

allocated resources will be executed. Otherwise, the

process Pi will wait for the required resources.

2.2 Comparison with OSM and OS

In this section, we analyze and compare OSM with

OS to successfully adopt Banker’s algorithm since
they both deals with processing multiple tasks

concurrently.

Table 1, describes comparison between OS and

OSM. In both OS and OSM, risk of deadlock exists

when allocating resources. In OS, resources are

adequately allocated to processes to avoid deadlock.

But, in OSM, supplier arranges orders of retailers to

avoid risk of capital chain rupture. In OS, system

resources are allocated to each process and they are

returned to system when process is completed. But,

in OSM, commodities are allocated to retailers and

retailers make payment to supplier when the

requests are fully satisfied.

In these concurrent systems, two systems deals

with difference entity types, but they have a common

goal to avoid deadlocks from incorrect scheduling.

Comparison Criteria OS OSM

Object to be Scheduled Processes Orders

Deadlock Avoidance

Policy

Banker’s

algorithm

Scheduling

algorithm

Resources
Memory,

CPU, etc.

Money,

Commodities

Table. 1. Comparison between OS and OSM

3. ADOPTION OF BANKER’S ALGORITHM IN OSM

3.1 Modeling OSM

In order to adopt Banker’s algorithm, OSM is

modeled accordingly. A single order in OSM is

modeled as a process and multiple commodities is

modeled as resources that retailers need. If

scheduling in OSM is inadequate, it will cause

insufficient money flow of supplier and create a risk

of capital chain rupture. We such a deadlock, supplier

cannot produce commodities for current order and

retailers enters an unsafe state of indefinite waiting.

Since original resources (commodities) are not

return but payment is made from retailers to supplier

in OSM, safe state is defined as a state with

sufficient money flow for the next production. A

safety allocation sequence in OSM can be acquired

by Banker’s algorithm where the money flow should
remain in a safe state.

3.2 Implementation of Banker’s Algorithm

The ideal approach is simply to ensure that the

661

2016년 한국컴퓨터종합학술대회 논문집



supplier acquires sufficient money flow by always

remaining in a safe state. Safe state in OSM enable

supplier to avoid deadlock situation by acquiring

sufficient money flow. Resource recycling process in

OS is applicable in OSM where the transactions

between retailers and supplier take similar roles. For

this reason, the Banker’s algorithm from OS can be
directly implemented in OSM. An implementation of

Banker’s algorithm would require O(m) time and
O(n+m) space to process a request or release, where
m is the number of resource types [6].
Suppose that Requesti(1,...,m) is vector of requested
resources for the process Pi. When retailers make a
request to supplier, the system will detect the state

of order scheduling management as below:

1) If Requesti(1,...,m)≧Need(i,1,...,m), it is illegal
request since requested commodities exceeds

maximum quantity of commodities in the

contract. Otherwise, move forward to the next

step.

2) If Requesti(1,...,m)≧Availability(1,...,m), it represents
that the supplier cannot satisfy the current

request of retailer and causes deadlock.

Otherwise, move forward to the next step.

3) Supplier tries to allocate commodities for

requests of retailers. Then, the relationship

should be updated:

Availability’(x) = Availability’(x) - Requesti(x)
Allocation’(i,x) = Allocation(i,x) + Requesti(x)
Need’(i,x)= Need(i,x) - Requesti(x)

Through the above procedural method of deadlock

detection for OSM, the supplier is able to safely

perform current state order scheduling.

33.3 Verification with SPIN

The safety sequences of order scheduling for OSM

can be obtained by Banker’s algorithm. In order to
verify the correctness of the safety sequences SPIN

model checker is used. SPIN is an efficient

verification tool for multi-threaded software system

[7]. To verify the correctness of the proposed

methodology, it is written in Promela language. Safe

detection method of Banker’s algorithm is used to
simulate this model for current request of orders.

The pseudo code is a detection algorithm for

detecting safe state using in SPIN.

When the model above is simulated with SPIN, no

errors were resulted indicating the correctness of

the proposed safety sequences. Hence, it proves that

the correct safety sequences can be obtained in OSM

by adopting Banker’s algorithm.
DDetection of safe state

Initial: work[m] //available commodities, m is number of types

finish[n]= false //the status of finished orders

num = 0 // counter

1. work[1 to m] equals currently available commodities

2. for i∈n do

3. for j∈m do

4. if Need[i,j]≦work[j] and !finish[i] then

5. num++

6. end

7. if num == m then

8. work[j] <- work[j] + Allocation[i,j]

9. finish[i] <- true

10. end

11. end

12. end

13. if finish[1,...,n] == TRUE then Safe state;

else Unsafe state

44. CONCLUSION

In this paper, an effective deadlock avoidance

methodology for OSM is proposed by adopting

Banker’s algorithm from OS. Initially, the differences
between OS and OSM are analysis and compare.

Then OSM is modeled adequately and Banker’s
algorithm is adopted for order scheduling. Finally, the

correctness of the proposed methodology is verified

using SPIN. With the proposed methodology,

suppliers can better manage orders and prevent

capital chain ruptures by avoiding deadlock in order

scheduling. It also enables suppliers to increase their

money flow.

REFERENCES

[1] X. Tang, “Computer Operating System,” Xidian University,

Xi’an, Shannxi, China, 2014.

[2] G. J. Holzmann, “The SPIN model checker: Primer and

reference manual,” Addison Wesley, Boston, MA, USA, 2004.

[3] G. Hou, “Deep analysis of banker algorithm,” Journal of

Weifang University, vol. 6, pp. 46-48, March 2006.

[4] E. W. Dijkstra, “Cooperating sequential processes,” Technical

Report EWD-123, Technological University, Eindhoven, The

Netherlands, 1965.

[5] A. N. Haberman, “Prevention of system deadlocks,”

Communication of the ACM, vol. 12, No. 7, pp. 373-385, July

1969.

[6] F. Belik, “Deadlock avoidance with a modified banker’s

algorithm,” BIT Numerical Mathematics, vol. 27, No. 3, pp.

290-305, 1987.

[7] H. Lin, W. Zhang, “Model checking: Theories, Techniques and

Applications,”Acta Electronica Sinica, vol. 30, No. 12, pp.

1907-1912, December, 2002.

662

2016년 한국컴퓨터종합학술대회 논문집


